Measuring General Relational Structure Using the Block Modularity Clustering Objective

نویسندگان

  • Adam Anthony
  • Marie desJardins
  • Michael Lombardi
چکیده

The performance of all relational learning techniques has an implicit dependence on the underlying connectivity structure of the relations that are used as input. In this paper, we show how clustering can be used to develop an efficient optimization strategy can be used to effectively measure the structure of a graph in the absence of labeled instances.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering Categorical Data Using an Extended Modularity Measure

Newman and Girvan [12] recently proposed an objective function for graph clustering called the Modularity function which allows automatic selection of the number of clusters. Empirically, higher values of the Modularity function have been shown to correlate well with good graph clustering. In this paper we propose an extended Modularity measure for categorical data clustering; first, we establi...

متن کامل

Maximum Maintainability of Complex Systems via Modulation Based on DSM and Module Layout.Case Study:Laser Range Finder

The present paper aims to investigate the effects of modularity and the layout of subsystems and parts of a complex system on its maintainability. For this purpose, four objective functions have been considered simultaneously: I) maximizing the level of accordance between system design and optimum modularity design,II) maximizing the level of accessibility and the maintenance space required,III...

متن کامل

A Hybrid Grey based Two Steps Clustering and Firefly Algorithm for Portfolio Selection

Considering the concept of clustering, the main idea of the present study is based on the fact that all stocks for choosing and ranking will not be necessarily in one cluster. Taking the mentioned point into account, this study aims at offering a new methodology for making decisions concerning the formation of a portfolio of stocks in the stock market. To meet this end, Multiple-Criteria Decisi...

متن کامل

Generalized modularity measure for evaluating community structure in complex networks

Discovering community structure is fundamental for uncovering the links between structure and function in complex networks and modularity optimization is the widely accepted method for this issue. However, there is no consensus criteria for measuring the community structure. In this paper, we propose a new quantitative function for community partition–i.e., generalized modularity or M value. We...

متن کامل

Non-parametric Bayesian graph models reveal community structure in resting state fMRI

Modeling of resting state functional magnetic resonance imaging (rs-fMRI) data using network models is of increasing interest. It is often desirable to group nodes into clusters to interpret the communication patterns between nodes. In this study we consider three different nonparametric Bayesian models for node clustering in complex networks. In particular, we test their ability to predict uns...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009